Smart Computing | 127

Splitting the Expenditure by Intermediator Drive

Conveying

Praveen Kumar?, Gokul Modi?, Surendra Singh®, Rohan Choksey*, Bipin Chaudhary®
Department of Computer Science & Engineering

Parul University, Vadodara, Gujarat
Email: Praveen.kumar270052@paruluniversity.ac.in®, 170303105173@paruluniversity.ac.in?,

170303105048@paruluniversity.ac.in®, 170303105043@paruluniversity.ac.in®, 170303105038@paruluniversity.ac.in®

DOI:- https://doi.org/10.47531/SC.2022.20

Abstract
Ride-sharing (RS) has great value in saving energy and alleviating traffic pressure.
Existing studies can be improved for better efficiency. Therefore, we propose a new
ride-sharing model, where each driver has a requirement that if the driver shares a
ride with a rider, the shared route percentage exceeds the expected rate of the driver.
Customers are both price and delay-sensitive, and drivers are strategic and self-
scheduling. We prove that optimizing the matching decisions have a first-order effect
on the system performance. We show that fixing the matching decisions and optimizing

only the pricing decisions does not generally maximize matchings.

Similarly, we show that fixing the pricing decisions and optimizing only the matching
decisions is not optimal in general. Finally, we show that optimizing in only one
dimension (either pricing or matching) has no benefit to the firm under some

conditions. In contrast, joint pricing and matching optimization can lead to a

significant performance increase.

Keywords: - Vehicles, Roads, Real-time ride-sharing, Machine Learning,

Recommender System, Dynamic Pricing.

INTRODUCTION

In this paper, we study ride-sharing platforms such
as Lyft, Sidecar, and Uber. Since their founding in
the last several years, these platforms have
experienced extraordinary growth. At their core,
the platforms reduce the friction in matching and
dispatch for transportation. A typical transaction
on these platforms is as follows: a potential rider

opens the app on her phone and requests a ride; the

system matches her to a nearby driver if one is
available, else blocks the ride request. These
platforms typically do not employ drivers but
deliver a share of the earnings per ride to the
driver, to incentivize driver participation Ride-
sharing platforms are thus two-sided markets:
drivers on one side and passengers on the other.
Consequently, a central goal of the platform's

intermediation is to calibrate supply and demand
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relative to each other while ensuring relatively
high satisfaction to both sides. An essential tool
used by these platforms to manage supply and
demand is dynamic pricing — the platform can
adjust ride prices in real time to react to changes in
ride requests and available drivers. The central
focus of this paper is in understanding how these
two features of ride-sharing platforms, their two-
sided nature and the ability to price based on real-
time state — influence the volume of trade and the

platform's revenue.

To capture the fast-timescale dynamics of ride-
sharing platforms, we employ a queueing theoretic
approach. Our primary modelling contribution lies
in combining this queueing model for the
underlying  stochastic  dynamics with an
equilibrium analysis that captures drivers and
passengers' incentives and throughput/revenue

maximization by the platform.

The general model we consider is one where a
geographic area is divided into regions. Each ride
involves a driver picking up a passenger in one
region and dropping her off in another. For
simplicity, we analyze this model first for a single
region; subsequently, using tools from classical
gueueing theory, we generalize some of our results
to networks of regions. Key to our model is an
intrinsic timescale separation in the behaviour of
drivers and passengers. In ride-sharing platforms
driven by mobile apps, passengers are typically
sensitive to the immediate price of the ride they
request. If this price is too high, price-sensitive
customers will abandon it. On the other hand,
drivers are typically sensitive to the average wages
they earn over a longer period, usually several
days or a week. Thus, drivers often select specific

periods when they are “active" during the week

and adjust their activity levels based on their

earnings assessment during the last week.

Two key questions common to all ride-sharing
firms concern pricing and matching. Pricing
determines customer demand and driver supply
because lower prices attract customers, and higher
prices attract drivers. Meanwhile, matching
connects a customer requesting a ride with a
driver, determining how long the customer must
wait for driver pick-up. Together, the pricing and
matching  decisions affect the geospatial
distribution of the drivers at any given point in
time. In turn, that geospatial distribution
determines the set of available drivers to be

matched with an arriving customer.

However, a customer offered a far-away driver
may not accept the ride due to the long pick-up
time. This paper aims to maximize the number of
matched customers, meaning the number of
customers who accept the offered rides, by jointly
optimizing the pricing and matching decisions.
Email address: erhozkan@ku.edu.tr There are
many papers in the literature (e.g., Besbes, Castro,
& Lobel, 2018; Bimpikis, Candogan, ~ & Saban,
2019; Castillo, Knoepfle, & Weyl, 2016; Guda &
Subramanian, 2019; Riquelme,
Banerjee, & Johari, 2015) that optimize the pricing
decisions under an assumed matching policy. The
price is varied across locations to influence the
locations of drivers waiting to be assigned to a
customer. The matching policy is fixed and could,
for example, offer an arriving customer the closest
available driver. However, as the following
example shows, ignoring matching optimization

can result in subpar overall performance.
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LITERATURE SURVEY
1. Popular Ride-Sharing Applications and
Their Limitations

Our study began with an in-depth inspection of
several famous Ride Sharing applications like
UberPool, LyftLine, Juno, Curb, Wingz, Via,
Flywheel, Zimride, and Waze. Some of the
common limitations and reasons for disputes
observed in all the applications are that drivers get
to know the count of passengers at the pick-up

point.

On many trips, the vehicle is occupied with only
one passenger, which is entirely against the
essence of Ride Sharing. Additional limitations
include users' lack of basic details of other users
they are travelling with, unfair pricing, and the
sudden addition of riders, which adds a significant
amount of time to complete trips due to distant

locations.

Reference Test Specimens

Noting the limitations in applications, we have
designed our model considering most of the
discovered limitations. While matching, we first
perform the exact match, which finds riders with
exactly matching characteristics. If the pool is
incomplete, we find riders with little different or

closer characteristics. If the pool remains

incomplete, we incorporate the current Uber or
Lyft model of matching riders irrespective of
characteristics [8]. Utilizing the three types of
matching in the system ensures that we serve most
broadcasting rider requests and complete the pool
for a maximum number of trips. After having
every passenger’s details, we provide the trip
itinerary to every rider, including the driver, before
commencing the trip, which assists in reducing the
social barriers among riders. The types of

matching are illustrated in Table 1.

Tracking Rider Characteristics

The designed model allows the riders to
provide feedback only to the users they have
travelled before on trips. The method for
tracking the data characteristic utilizes rider
feedback records. For example, a user may
constantly rate a high score of 4 or a low score
of 0 to a specific characteristic for several
trips, implying users are less interested in
that specific characteristic. Our motive is to find
the characteristics the user is most interested in
and recommend riders based on the tracked
characteristics. The methodology selected for
tracking rider characteristics is variance and is
demonstrated with the help of lists, L1 = [1, 0, 5,
4,0],L2=10,0,0,0, 2], and L3 = [4, 4, 4, 4, 4].

Riders% Chatty Safety Punctuality Friendliness Comfortability
Broadcasting Rider 2 4 4 2
Characteristics
Search Riders Having 2 4 4 2
Exact Characteristics
Search Riders Having 3(+1) 4 3(-1) 2
Closer Characteristics
Search Riders of 4 5 5 5
Irrespective of Characteristics
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The total number of sample points in each list is
given by N, and the mean is denoted by xi. The
difference x distance of data-point x to the mean xi
is computed by x — xi [12]. The general definition
of the wvariance is the average of squared
differences from the mean [12]. Variance indicates
each sample point's spread level in a data set [12]
and is given by Equation 1. The larger the variance
of a data set, the higher is the data variety [12]. If
the variance is applied to all three lists, the highest
score is computed for L1 as the data variety in L2
and L3 is notably low [12]. If a similar
methodology is applied for every characteristic
feedback, the characteristic feedback with the

highest variance is the rider's most focus.

N 2 N 2
‘r_\ . 2,, ](-\;Il\l.mu') .- L, ](-\ - Xj)

N N

Machine Learning Module Selection:-

After researching several methods for matching,
we selected the Machine Learning Content-Based
recommendation system. In this system, the
features are converted to vectors and represented
in d-dimensional space, where d is the number of
features [3]. The angular distance or the cosine of
the angle, 8 between the vectors is calculated using
the dot product equation [3, 13]. Vectors with the
highest cosine values are deemed as the best
match. We made a similar use where the features
represented the registered rider characteristics, and
riders with higher cosine similarities are paired up
on a trip. The classification module we selected for
classifier prediction is the Support Vector
Machines (SVM) because of SVM's Radial Bias
Function (RBF) Kernel. The RBF kernel is a
highly non-linear curve that is used for
distinguishing classes [5]. SVM works on the

principle of placing the line to the closest data

point with maximum distance. The line placement
is changed through the regularization parameter,
C, and the gamma parameter, vy [5]. The process of
governing the curve placement is called
Kernelization [5, 9]. The regularization allows a
slight error of fitting a class, including fewer data
points of other classes and is best suited for
imbalanced data sets [5, 9].

PROPOSED MODEL

1. System Architecture:-

The critical elements of the proposed architecture
are the broadcasting rider request, the closest
driver, matching layers, the feedback system, and
the Machine Learning module. Figure 1 reflects
the system architecture. The broadcasting rider
request consists of rider source, destination, and
the rider user-id. The registered five characteristics
are retrieved from the data server and are
referenced throughout the trip while searching for
more riders using the user-id. For the best
simulation practices, we have utilized the New
York Cab location database [14]. The NYC Cab
locations are divided into 263 zones that are useful
to avoid a larger search. The closest available
driver is retrieved from the same source
broadcasting rider's source zone using the Google
Map Distance Matrix API. The key element in
driver association is noting the vehicle seating
capacity. The next step is the execution of the
characteristics  matching  layer.  All  the
broadcasting riders having Exact or Closer
characteristics from the same source zone are
retrieved. Riders go through the ML-based
recommendation system and are trip while
searching for more riders using the based
recommendation system and are the user-id. For

the best simulation practices, we have utilized the
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New York Cab location database [14]. The NYC
Cab locations are divided into 263 zones that are
useful to avoid a larger search. The closest
available driver is retrieved from the same source
broadcasting rider's source zone using the Google
Map Distance Matrix API. The key element in
driver association is noting the vehicle seating
capacity. The next step is the execution of the
characteristics ~ matching  layer.  All  the
broadcasting riders having Exact or Closer
characteristics from the same source zone are
retrieved. Riders go through the ML-based
recommendation system and are later added to the

final trip itinerary.

Broadcasting

Rider N Characteristics
Matching Layer

ML Conlenrsascd
B R«ommrndanon
: a
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Final Rider List
Complete Trip

[ Save Feedback

Compute Classifiers
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The Mochine Learning Module

Find Closest Driver

Fig. 1. The System Architecture

The next step is of saving the feedback and
computing two classifiers for every user. Riders
are classified into two classes, and these classes
are referred for rider recommendations in future
trips. The following step is the training and testing
of the Machine Learning classification model. For
newly registering riders, the Machine Learning
module predicts classifiers and provides better
rider recommendations. The phase of Machine

Learning is the final step of our architecture.

Machine Learning Recommendation System:-

Initially, rider characteristics are converted to a
vector. For example, a broadcasting rider by with
characteristics be chatty:3, safety:4, punctuality:3,

friendliness:3 and comfortability:4 is represented

as char v br = [3, 4, 3, 3, 4]. In Figure 2, 'O’
represents the origin and points ‘B’, ‘1°, and ‘2’
represent the points plotted by the vectors for
broadcasting and other riders. The next step is to
compute the angular distance between vectors or
the cosine of angle 0 abusing the dot-product

Equation 2

The case of rider matching by exact characteristics
is when the 0ab equal to 0 or cosBab is 1.
Therefore, a greater cosine value means a greater
match. In Figure 2, char v1 or Riderl seems to be
a better match than char v2 due to a smaller angle
01B. In rider matching simulations, we accept
riders only with a cosfab value above 0.85 or 85%,
which we felt is enough percentage to indicate a

good match.

Computation of Classifiers:-

The first classifier is called the Feedback- Given-
Classifier and uses the first part of the feedback
data, which includes the ratings given by a rider to

other riders. For example,

Rider,, 6,5 — Good Match
. char_v,, = [3,4,3,3,4] o
28
- o Bad Match
o
(0]
Rider, 2] Rider,
. S Dimensional Space -
[z

char_v, = (4,4,3,5,3] char_v, =(2,1,5,1,1)

Fig. 2. Rider matching using Content-Based recommendation

(char_v,-char_vy)

costly, =
. llchar vallllchar v

Let the feedback given by Riderl to other
riders be as shown in Table 2. The data given
by the rider is segregated characteristic wise
and appended in new lists as follows:
chattyRiderl = [0, O, 1], sa f etyRiderl =
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[2,3,5], punctuality Riderl = [1, 0, 0],
friendliness Riderl = 1[4, 4, 4], and
comfortability Riderl = [0, 0, 0]. The

observation made from the five lists is that
Riderl may continue to give a friend rating of
4 or comfort or a punctual rating of O in future
trips. The only data variety observed is in the

safety equation is stated in Equation3.

ali E _‘
}_” i WX = Xchar_i)

‘ra har —

dara_count

The characteristic list with the highest
variance is selected as this proves that the user
is more diverse in rating the characteristic and
therefore focuses more on the specific
characteristic. After getting the first classifier,
the system computes the Feedback-Received-
Classifier is the safety class. The computation
is done using the variance equation. Total
number of elements in a characteristic list is n

char or data count char.

The mean is denoted by x char i and variance

Classifier using the second part of the

feedback data-set, which is the feedback
received by other riders to a rider.

Let the feedback given to Riderl be as shown
in the Table 3. Each element in the column has
two values. The first value is the rating given
by the rider for a specific characteristic, and
the second value is the characteristic variance
((o1 char) 2) computed for the individual
rider’s characteristics. Every time a rider
provides feedback, the feedback value is
multiplied by the corresponding characteristic
variance. To exemplify, Rider2 variance for
safety is 4.31, and the safety rating to Riderl
is 2.

The computed feedback to Riderl safety
characteristic is 2 * 4.31, which is 8.62. In the
end, for every rider’s search criteria is
dynamically defined by the system. The
scenario at this stage resembles a practical use
case as riders classify other riders based on
their past experiences, which assists in better

and real- time recommendations to riders

Table 2
Riders%o Chatty Safety] Punctuality Friendliness Comfortability
Riderl 0 2 1 4 0
Rider2 0 3 0 4 0
Rider3 1 5 0 4 0
Table 3
Riders(%o) Chatty Safety Punctuality Friendliness Comfortability
Riderl 4*0.32 2*4.31 0*2.10 2*0.1 4*1.73
Rider2 3*3.45 1*0.15 1*0.55 0*5.72 3*3.34
Rider3 3*9.21 0*3.21 3*0.02 0*0.21 0*1.32
Total 39.26 8.77 0.61 0.2 16.92
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Model Evaluation & Results:-

At first, we evaluate the Machine Learning model
by computing the F1 score, precision, and recall
for the five classifiers. The F1 score, recall,
precision, and confusion matrix provides a
comparison between computed scores and
predicted scores. A higher score means the
predicted classes match the computed classes for
the same set of inputs. Tables 4 and Table 5
presents the characteristic, all multiplications are
added and compared to get the highest
characteristic value, which forms the Feedback-
Received- Classifier. In the same example, the
classifier is chatty, as the value is highest, which is
39.26. After computing the two classifiers,

performance measures for both SVMs

The confusion matrix provides a two- dimensional
array, which states how much error the module
makes in predictions. The matrix reflects how
much the model predicted correctly, also called as
the true positive scores. In the case of the
confusion matrix, if the diagonal elements have the
highest values, the prediction of the model is
notably accurate. From Figure 3, we conclude that
our true positive scores for both SVMs are high,
and the model predicts accurately. From Tables 5
and 6, the precision and recall is above 85% which
is a good measure for a Machine Learning
classification model. We indeed got an
overall accuracy of 90% for both SVMs. Also, we

computed the Root Mean.

Table 5
Measurement (%) Chatty Safety Punctuality Friendliness Comfortability
F1 Score 87.85 89.02 90.63 93.22 93.21
Precision 86.13 87.52 92.58 91.97 95.48
Recall 89.85 88.82 89.67 94.49 96.96

Fig. 4. Simulation matching rate (left) and total number of computed trips (right)
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CONCLUSIONS

We implemented our designed and proposed
model of Ride Sharing based on rider
characteristics and Machine Learning Content-
Based recommendation system. We subjected the
model to an extensive simulation to test system
performance. The matching rate and the number of
completed trips continue rising with the
progressing simulations or increasing number of
traversed riders. Also, the SVM modules run with
an accuracy of 90% and precisely predict
classifiers for newly registering riders, which is
crucial in providing better and real- time rider
recommendations. Based on observations, the
overall trip formation time rounds up to a minute.
Indeed, we achieved our major goals of
completing a maximum number of trips with pool
completion and getting maximum rider matches by
Exact and Closer characteristics matching. Our
future work includes building a full-fledged
Android or Web application as well as a
sophisticated pricing model for users. Also, riders
may be allowed to add riders as “Favourites,” and
the system will recommend the added riders if they
are broadcasting at the same time on a similar

commuting trajectory.
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