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Abstract 

Ride-sharing (RS) has great value in saving energy and alleviating traffic pressure. 

Existing studies can be improved for better efficiency. Therefore, we propose a new 

ride-sharing model, where each driver has a requirement that if the driver shares a 

ride with a rider, the shared route percentage exceeds the expected rate of the driver. 

Customers are both price and delay-sensitive, and drivers are strategic and self-

scheduling. We prove that optimizing the matching decisions have a first-order effect 

on the system performance. We show that fixing the matching decisions and optimizing 

only the pricing decisions does not generally maximize matchings. 

Similarly, we show that fixing the pricing decisions and optimizing only the matching 

decisions is not optimal in general. Finally, we show that optimizing in only one 

dimension (either pricing or matching) has no benefit to the firm under some 

conditions. In contrast, joint pricing and matching optimization can lead to a 

significant performance increase. 

Keywords: - Vehicles, Roads, Real-time ride-sharing, Machine Learning, 

Recommender System, Dynamic Pricing. 

INTRODUCTION 

In this paper, we study ride-sharing platforms such 

as Lyft, Sidecar, and Uber. Since their founding in 

the last several years, these platforms have 

experienced extraordinary growth. At their core, 

the platforms reduce the friction in matching and 

dispatch for transportation. A typical transaction 

on these platforms is as follows: a potential rider 

opens the app on her phone and requests a ride; the 

system matches her to a nearby driver if one is 

available, else blocks the ride request. These 

platforms typically do not employ drivers but 

deliver a share of the earnings per ride to the 

driver, to incentivize driver participation Ride-

sharing platforms are thus two-sided markets: 

drivers on one side and passengers on the other. 

Consequently, a central goal of the platform's 

intermediation is to calibrate supply and demand 
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relative to each other while ensuring relatively 

high satisfaction to both sides. An essential tool 

used by these platforms to manage supply and 

demand is dynamic pricing – the platform can 

adjust ride prices in real time to react to changes in 

ride requests and available drivers. The central 

focus of this paper is in understanding how these 

two features of ride-sharing platforms, their two-

sided nature and the ability to price based on real-

time state – influence the volume of trade and the 

platform's revenue. 

To capture the fast-timescale dynamics of ride-

sharing platforms, we employ a queueing theoretic 

approach. Our primary modelling contribution lies 

in combining this queueing model for the 

underlying stochastic dynamics with an 

equilibrium analysis that captures drivers and 

passengers' incentives and throughput/revenue 

maximization by the platform.  

The general model we consider is one where a 

geographic area is divided into regions. Each ride 

involves a driver picking up a passenger in one 

region and dropping her off in another. For 

simplicity, we analyze this model first for a single 

region; subsequently, using tools from classical 

queueing theory, we generalize some of our results 

to networks of regions. Key to our model is an 

intrinsic timescale separation in the behaviour of 

drivers and passengers. In ride-sharing platforms 

driven by mobile apps, passengers are typically 

sensitive to the immediate price of the ride they 

request. If this price is too high, price-sensitive 

customers will abandon it. On the other hand, 

drivers are typically sensitive to the average wages 

they earn over a longer period, usually several 

days or a week. Thus, drivers often select specific 

periods when they are "active" during the week 

and adjust their activity levels based on their 

earnings assessment during the last week.  

Two key questions common to all ride-sharing 

firms concern pricing and matching. Pricing 

determines customer demand and driver supply 

because lower prices attract customers, and higher 

prices attract drivers. Meanwhile, matching 

connects a customer requesting a ride with a 

driver, determining how long the customer must 

wait for driver pick-up. Together, the pricing and 

matching decisions affect the geospatial 

distribution of the drivers at any given point in 

time. In turn, that geospatial distribution 

determines the set of available drivers to be 

matched with an arriving customer.  

However, a customer offered a far-away driver 

may not accept the ride due to the long pick-up 

time. This paper aims to maximize the number of 

matched customers, meaning the number of 

customers who accept the offered rides, by jointly 

optimizing the pricing and matching decisions. 

Email address: erhozkan@ku.edu.tr There are 

many papers in the literature (e.g., Besbes, Castro, 

& Lobel, 2018; Bimpikis, Candogan, ˘ & Saban, 

2019; Castillo, Knoepfle, & Weyl, 2016; Guda   &   

Subramanian,  2019; Riquelme, 

Banerjee, & Johari, 2015) that optimize the pricing 

decisions under an assumed matching policy. The 

price is varied across locations to influence the 

locations of drivers waiting to be assigned to a 

customer. The matching policy is fixed and could, 

for example, offer an arriving customer the closest 

available driver. However, as the following 

example shows, ignoring matching optimization 

can result in subpar overall performance. 
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LITERATURE SURVEY 

1. Popular Ride-Sharing Applications and 

Their Limitations 

Our study began with an in-depth inspection of 

several famous Ride Sharing applications like 

UberPool, LyftLine, Juno, Curb, Wingz, Via, 

Flywheel, Zimride, and Waze. Some of the 

common limitations and reasons for disputes 

observed in all the applications are that drivers get 

to know the count of passengers at the pick-up 

point.  

On many trips, the vehicle is occupied with only 

one passenger, which is entirely against the 

essence of Ride Sharing. Additional limitations 

include users' lack of basic details of other users 

they are travelling with, unfair pricing, and the 

sudden addition of riders, which adds a significant 

amount of time to complete trips due to distant 

locations.  

Reference Test Specimens  

Noting the limitations in applications, we have 

designed our model considering most of the 

discovered limitations. While matching, we first 

perform the exact match, which finds riders with 

exactly matching characteristics. If the pool is 

incomplete, we find riders with little different or 

closer characteristics. If the pool remains 

incomplete, we incorporate the current Uber or 

Lyft model of matching riders irrespective of 

characteristics [8]. Utilizing the three types of 

matching in the system ensures that we serve most 

broadcasting rider requests and complete the pool 

for a maximum number of trips. After having 

every passenger’s details, we provide the trip 

itinerary to every rider, including the driver, before 

commencing the trip, which assists in reducing the 

social barriers among riders. The types of 

matching are illustrated in Table 1. 

Tracking Rider Characteristics 

The designed model allows the riders to 

provide feedback only to the users they have 

travelled before on trips. The method for 

tracking the data characteristic utilizes rider 

feedback records. For example, a user may 

constantly rate a high score of 4 or a low score 

of 0 to a specific characteristic for several 

trips, implying users are less interested in 

that specific characteristic. Our motive is to find 

the characteristics the user is most interested in 

and recommend riders based on the tracked 

characteristics. The methodology selected for   

tracking rider characteristics is variance and is 

demonstrated with the help of lists, L1 = [1, 0, 5, 

4, 0], L2 = [0, 0, 0, 0, 2], and L3 = [4, 4, 4, 4, 4].

Table-1 

Riders% Chatty Safety Punctuality Friendliness Comfortability 

Broadcasting Rider 

Characteristics 

2 3 4 4 2 

Search Riders Having 

Exact Characteristics 

2 3 4 4 2 

Search Riders Having 

Closer Characteristics 

3(+1) 3 4 3(-1) 2 

Search Riders of 

Irrespective of Characteristics 

4 1 5 5 5 
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The total number of sample points in each list is 

given by N, and the mean is denoted by xi. The 

difference x distance of data-point x to the mean xi 

is computed by x − xi [12]. The general definition 

of the variance is the average of squared 

differences from the mean [12]. Variance indicates 

each sample point's spread level in a data set [12] 

and is given by Equation 1. The larger the variance 

of a data set, the higher is the data variety [12]. If 

the variance is applied to all three lists, the highest 

score is computed for L1 as the data variety in L2 

and L3 is notably low [12]. If a similar 

methodology is applied for every characteristic 

feedback, the characteristic feedback with the 

highest variance is the rider's most focus. 

 

Machine Learning Module Selection:- 

After researching several methods for matching, 

we selected the Machine Learning Content-Based 

recommendation system. In this system, the 

features are converted to vectors and represented 

in d-dimensional space, where d is the number of 

features [3]. The angular distance or the cosine of 

the angle, θ between the vectors is calculated using 

the dot product equation [3, 13]. Vectors with the 

highest cosine values are deemed as the best 

match. We made a similar use where the features 

represented the registered rider characteristics, and 

riders with higher cosine similarities are paired up 

on a trip. The classification module we selected for 

classifier prediction is the Support Vector 

Machines (SVM) because of SVM's Radial Bias 

Function (RBF) Kernel. The RBF kernel is a 

highly non-linear curve that is used for 

distinguishing classes [5]. SVM works on the 

principle of placing the line to the closest data 

point with maximum distance. The line placement 

is changed through the regularization parameter, 

C, and the gamma parameter, γ [5]. The process of 

governing the curve placement is called 

Kernelization [5, 9]. The regularization allows a 

slight error of fitting a class, including fewer data 

points of other classes and is best suited for 

imbalanced data sets [5, 9]. 

PROPOSED MODEL 

1. System Architecture:- 

The critical elements of the proposed architecture 

are the broadcasting rider request, the closest 

driver, matching layers, the feedback system, and 

the Machine Learning module. Figure 1 reflects 

the system architecture. The broadcasting rider 

request consists of rider source, destination, and 

the rider user-id. The registered five characteristics 

are retrieved from the data server and are 

referenced throughout the trip while searching for 

more riders using the user-id. For the best 

simulation practices, we have utilized the New 

York Cab location database [14]. The NYC Cab 

locations are divided into 263 zones that are useful 

to avoid a larger search. The closest available 

driver is retrieved from the same source 

broadcasting rider's source zone using the Google 

Map Distance Matrix API. The key element in 

driver association is noting the vehicle seating 

capacity. The next step is the execution of the 

characteristics matching layer. All the 

broadcasting riders having Exact or Closer 

characteristics from the same source zone are 

retrieved. Riders go through the ML-based 

recommendation system and are trip while 

searching for more riders using the based 

recommendation system and are the user-id. For 

the best simulation practices, we have utilized the 
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New York Cab location database [14]. The NYC 

Cab locations are divided into 263 zones that are 

useful to avoid a larger search. The closest 

available driver is retrieved from the same source 

broadcasting rider's source zone using the Google 

Map Distance Matrix API. The key element in 

driver association is noting the vehicle seating 

capacity. The next step is the execution of the 

characteristics matching layer. All the 

broadcasting riders having Exact or Closer 

characteristics from the same source zone are 

retrieved. Riders go through the ML-based 

recommendation system and are later added to the 

final trip itinerary.   

 

The next step is of saving the feedback and 

computing two classifiers for every user. Riders 

are classified into two classes, and these classes 

are referred for rider recommendations in future 

trips. The following step is the training and testing 

of the Machine Learning classification model. For 

newly registering riders, the Machine Learning 

module predicts classifiers and provides better 

rider recommendations. The phase of Machine 

Learning is the final step of our architecture. 

Machine Learning Recommendation System:- 

Initially, rider characteristics are converted to a 

vector. For example, a broadcasting rider by with 

characteristics be chatty:3, safety:4, punctuality:3, 

friendliness:3 and comfortability:4 is represented 

as char v br = [3, 4, 3, 3, 4]. In Figure 2, 'O' 

represents the origin and points ‘B’, ‘1’, and ‘2’ 

represent the points plotted by the vectors for 

broadcasting and other riders. The next step is to 

compute the angular distance between vectors or 

the cosine of angle θ abusing the dot-product 

Equation 2 

The case of rider matching by exact characteristics 

is when the θab equal to 0 or cosθab is 1. 

Therefore, a greater cosine value means a greater 

match. In Figure 2, char v1 or Rider1 seems to be 

a better match than char v2 due to a smaller angle 

θ1B. In rider matching simulations, we accept 

riders only with a cosθab value above 0.85 or 85%, 

which we felt is enough percentage to indicate a 

good match. 

Computation of Classifiers:- 

The first classifier is called the Feedback- Given-

Classifier and uses the first part of the feedback 

data, which includes the ratings given by a rider to 

other riders. For example, 

 

 

Let the feedback given by Rider1 to other 

riders be as shown in Table 2. The data given 

by the rider is segregated characteristic wise 

and appended in new lists as follows: 

chattyRider1 = [0, 0, 1], sa f etyRider1 = 
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[2,3,5],   punctuality Rider1   =   [1,   0,   0],   

friendliness Rider1  =  [4,  4,  4],  and  

comfortability Rider1 = [0, 0, 0]. The 

observation made from the five lists is that 

Rider1 may continue to give a friend rating of 

4 or comfort or a punctual rating of 0 in future 

trips. The only data variety observed is in the 

safety equation is stated in Equation3. 

 

The characteristic list with the highest 

variance is selected as this proves that the user 

is more diverse in rating the characteristic and 

therefore focuses more on the specific 

characteristic. After getting the first classifier, 

the system computes the Feedback-Received- 

Classifier is the safety class. The computation 

is done using the variance equation. Total 

number of elements in a characteristic list is n 

char or data count char. 

The mean is denoted by x char i and variance 

Classifier using the second part of the 

feedback data-set, which is the feedback 

received by other riders to a rider. 

Let the feedback given to Rider1 be as shown 

in the Table 3. Each element in the column has 

two values. The first value is the rating given 

by the rider for a specific characteristic, and 

the second value is the characteristic variance 

((σi char) 2) computed for the individual 

rider’s characteristics. Every time a rider 

provides feedback, the feedback value is 

multiplied by the corresponding characteristic 

variance. To exemplify, Rider2 variance for 

safety is 4.31, and the safety rating to Rider1 

is 2.  

The computed feedback to Rider1 safety 

characteristic is 2 ∗ 4.31, which is 8.62. In the 

end, for every rider’s search criteria is 

dynamically defined by the system. The 

scenario at this stage resembles a practical use 

case as riders classify other riders based on 

their past experiences, which assists in better 

and real- time recommendations to riders 

Table 2 

Riders% Chatty Safety Punctuality Friendliness Comfortability 

Rider1 0 2 1 4 0 

Rider2 0 3 0 4 0 

Rider3 1 5 0 4 0 

Table 3 

Riders(%) Chatty Safety Punctuality Friendliness Comfortability 

Rider1 4*0.32 2*4.31 0*2.10 2*0.1 4*1.73 

Rider2 3*3.45 1*0.15 1*0.55 0*5.72 3*3.34 

Rider3 3*9.21 0*3.21 3*0.02 0*0.21 0*1.32 

Total 39.26 8.77 0.61 0.2 16.92 
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Model Evaluation & Results:- 

At first, we evaluate the Machine Learning model 

by computing the F1 score, precision, and recall 

for the five classifiers. The F1 score, recall, 

precision, and confusion matrix provides a 

comparison between computed scores and 

predicted scores. A higher score means the 

predicted classes match the computed classes for 

the same set of inputs. Tables 4 and Table 5 

presents the characteristic, all multiplications are 

added and compared to get the highest 

characteristic value, which forms the Feedback-

Received- Classifier. In the same example, the 

classifier is chatty, as the value is highest, which is 

39.26. After computing the two classifiers, 

performance measures for both SVMs 

The confusion matrix provides a two- dimensional 

array, which states how much error the module 

makes in predictions. The matrix reflects how 

much the model predicted correctly, also called as 

the true positive scores. In the case of the 

confusion matrix, if the diagonal elements have the 

highest values, the prediction of the model is 

notably accurate. From Figure 3, we conclude that 

our true positive scores   for both SVMs are high, 

and the model predicts accurately. From Tables 5 

and 6, the precision and recall is above 85% which 

is a good measure for a Machine Learning 

classification   model.   We   indeed   got   an 

overall accuracy of 90% for both SVMs. Also, we 

computed the Root Mean. 

Table 5 

Measurement (%) Chatty Safety Punctuality Friendliness Comfortability 

F1 Score 87.85 89.02 90.63 93.22 93.21 

Precision 86.13 87.52 92.58 91.97 95.48 

Recall 89.85 88.82 89.67 94.49 96.96 
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CONCLUSIONS 

We implemented our designed and proposed 

model of Ride Sharing based on rider 

characteristics and Machine Learning Content-

Based recommendation system. We subjected the 

model to an extensive simulation to test system 

performance. The matching rate and the number of 

completed trips continue rising with the 

progressing simulations or increasing number of 

traversed riders. Also, the SVM modules run with 

an accuracy of 90% and precisely predict 

classifiers for newly registering riders, which is 

crucial in providing better and real- time rider 

recommendations. Based on observations, the 

overall trip formation time rounds up to a minute. 

Indeed, we achieved our major goals of 

completing a maximum number of trips with pool 

completion and getting maximum rider matches by 

Exact and Closer characteristics matching. Our 

future work includes building a full-fledged 

Android or Web application as well as a 

sophisticated pricing model for users. Also, riders 

may be allowed to add riders as “Favourites,” and 

the system will recommend the added riders if they 

are broadcasting at the same time on a similar 

commuting trajectory. 
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