

An Algorithm for Extraction of Heart Rate Variability from ECG Signal

Vishakha Khambhati¹, Dimpal Khambhati²

Department of Biomedical Engineering

Parul Institute of Engineering & Technology (DS)¹, Parul Institute of Technology², Vadodara, Gujarat, India

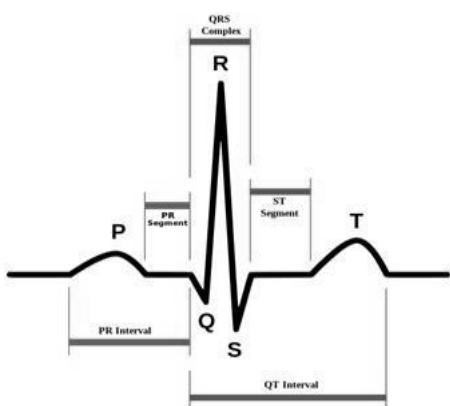
Email: vishakha.khambhati12673@paruluniversity.ac.in¹, dimpal.khambhati8803@paruluniversity.ac.in²

DOI:- <https://doi.org/10.47531/SC.2022.32>

Abstract

Nowadays, for the diagnosis of several diseases and to limit some dangerous diseases to spread up, can be easily done with the help of physiological signals of human beings, such as temperature, blood pressure, heart rate, respiratory rate etc. For example, Heart rate precisely and reliably plays a significant role in the primary recognition of heart attack and several heart rate associated syndromes. The electrocardiogram (ECG) is an outstanding strategy that can be utilized to measure Heart Rate Variability (HRV). This paper depicts a strategy for handling electrocardiogram signals (ECG) to recognize Heart Rate Variability (HRV). The HRV gives data about the thoughtful parasympathetic autonomic dependability and subsequently about the danger of unpredicted heart demise. We have actualized our technique utilizing MATLAB on ECG signal which is gotten from MIT/BIH arrhythmia database. In this strategy, first the ECG signal is pre-processed by band-pass filter; later the Hilbert Transform is applied on filtered ECG signal to improve the nearness of QRS peak. By computing Hilbert transform and applying moving window integration R-Peaks are identified. R-Peaks are detected by setting a threshold and after that RR-intervals are calculated to determine Heart Rate. Our MATLAB implementation results in the detection of QRS Complexes in ECG signal, locate the R-Peaks, computes Heart Rate (HR) by calculating RR-interval and plotting of HR signal to show the information about HRV.

Keywords: - *Physiological signal, ECG, QRS Complex, R Peaks, Heart rate, Hilbert transform, MIT-BIH Arrhythmia, MATLAB*


INTRODUCTION

The electrocardiogram (ECG) signal is the recording of the electrical activity of the heart which provides the clinical information about the condition of heart [1]. The investigation of ECG

signal plays a significant role in the diagnosis of heart diseases. Detection of ECG arrhythmias is necessary for the treatment of patients for diagnosing the heart disease at the early stage. Different types of artefacts like power-line

Interference, Baseline artefact and muscle artefact affects the originality of the ECG signals [2]. Therefore, to enhance the quality of ECG signals, the digital filters and adaptive filters are employed.

ECG signal is identified by electrical activity during a cardiac cycle named as P wave, QRS complex and T wave [3]. Detection of QRS complex and R peak is one of the most important parts of the ECG signal analysis. The cardiovascular arrhythmias are distinguished by choosing the exact QRS complex. The fundamental parts of ECG waveform are the P wave, PR interval, QRS complex, ST section, T wave and QT interval which represents to polarization of atria and ventricles in a consecutive way. These parts are appeared in the Figure-1. The frequency range of ECG signal is from 0.05 to 100 Hz.

Figure 1 ECG Waveform

This paper depicts a use of Hilbert change with versatile Thresholding for QRS complex and R-peak identification by utilizing recorded signs from the MIT-BIH database. The noisy ECG signal is filtered with a windowing task utilizing wavelet change to save the data of QRS complex. The executed outcomes are assessed both quantitatively and subjectively to test the execution of the calculations.

PRE-PROCESSING

ECG signal can be analysed and processed in two domains, Time and frequency [7]. Here, we have used Hilbert Transform to analyse ECG signal.

Hilbert Transform is used to rectify the phase in order to create a signal with peaks in the location of the R peaks [8]. To use Hilbert transform, first the ECG signal is band-pass filtered, then Hilbert transformed, followed by Thresholding operation.

In Pre-processing operation, different types of noises like Baseline, muscle movement and power line interference is removed from ECG signal by applying Band pass filter. The digital low-pass and high-pass filters are used to realize band-pass filter [9].

A. Low-Pass Filter

The low-pass filter is used to remove high frequency noise present in the signal and it is derived by following difference equation [11]:

$$y(n) = 2y(n-1) - y(n-2) + x(n) - 2x(n-4) + x(n-8)$$

B. High-Pass Filter

The High-pass filter is used for removing a very low dc Frequency noise of baseline wandering by the movement of patient and it is derived by following difference equation [11]:

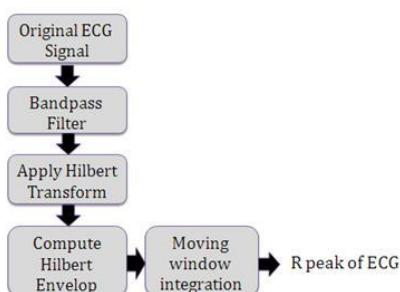
$$y(n) = 0.0303[y(n-1) - x(n) + x(n-33)] + x(n-16) - x(n-15)$$

HEART RATE DETECTION

To find heart rate (HR), detection of QRS complex, in turnIdentification of R-Peaks is essential. Any automated QRS Detection algorithm structure involves QRS enhancement and QRS detection [12]. The QRS enhancement stage is used to enlarge the QRS complex compared to the other ECG features (P, T, and noise). The QRS enhancement stage is occasionally called pre-

processing or feature extraction, which we have done already under pre-processing section. If the R-Peak is required to be detected, an extra step is needed to determine the maximum amplitude value within the detected QRS complex. Since R-wave is positive waveform and highest peak in ECG signal, the time interval between two successive R-wave peaks is used to calculate HR (beats/minute) as follows [13]:

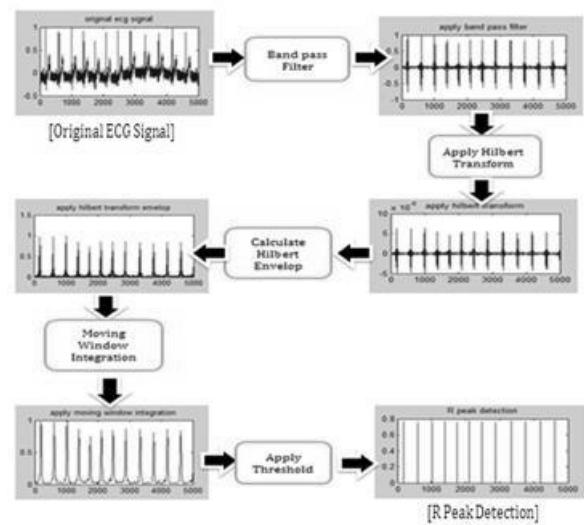
$$HR = \frac{60}{RR - \text{Interval}} \text{ Beats/minutes}$$

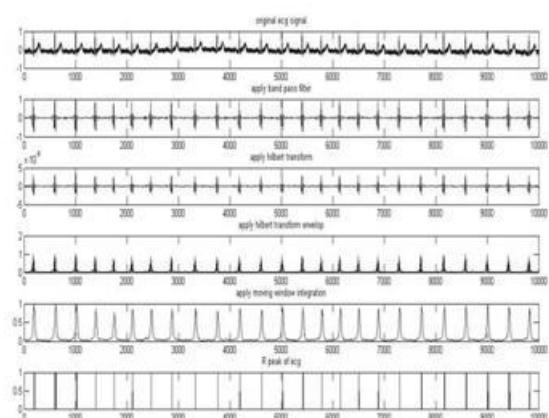

Hilbert transform is used to identify the R-wave peaks. Hilbert Transform of a real signal is defined as:

$$\begin{aligned} X_h(t) &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} d\tau \\ &= X(\tau) * \frac{1}{\pi t} \end{aligned}$$

And the envelop $X_e(n)$ of ECG signal, $x(n)$, is as,

$$\begin{aligned} X_e(n) &= \sqrt{x^2(n) + x_h^2(n)} \\ &= |x(n)| + |x_h(n)| \end{aligned}$$


After the ECG signal is filtered in a band-pass filter, the envelop of this ECG signal is computed with help of the above equation. Using the following algorithm R-Peaks from the Hilbert Transformed ECG signal are located and separation between consecutive R-Peaks are calculated. Figure 2 shows that Flow Diagram of R-Peak Detection using Hilbert Transform.


Figure 2 Flow Diagram of R-Peak Detection using Hilbert Transform

RESULT

We have applied this algorithm on ECG signal that is obtained from the MIT/BIH database. As per our algorithm, first the signal is passing through the low-pass filter and then high-pass filtered to cancel out the noise due to baseline wander, other physiological signals, to attenuate the low frequencies characteristics of P and T waves, to isolate and also enhance the predominant QRS energy centered at 10 Hz.

Figure 3 Flow Diagram of R-Peak Detection using Hilbert Transform

Figure 4 Heart rate detection by using Hilbert transform: (a) original ECG Signal (b) apply Band pass filter on original ECG (c) apply Hilbert Transform (d) Calculate Hilbert Envelop (e) apply Moving window integration and (f) apply threshold for R peak detection

Table 1 Correlation between Heart Rate and RR-Interval by using Hilbert Transform

SUBJECT	HR BY HILBERT TRANSFORM	RR INTERVAL BY HILBERT TRANSFORM
flo01	89	0.67
flo02	87	0.69
flo03	92	0.65
flo04	71	0.85
flo05	83	0.72
flo06	70	0.86
flo07	87	0.69
flo08	79	0.76
flo09	60	1.00
flo10	97	0.62
fly01	130	0.46
fly02	110	0.55
fly03	115	0.52
fly04	78	0.77
fly05	109	0.55
fly06	100	0.60
fly07	95	0.63
fly08	95	0.63
fly09	103	0.58
fly10	130	0.46

Table 2 Statistical Analysis (Mean, Standard Deviation, Correlation coefficient and MSE of Heart Rate and RR Interval) using Hilbert Transform

Sr. No.	Methods	Mean & Std. of HR	Mean & Std. of RR Interval	Correlation Coefficient	MSE
1.	Hilbert Transform	94 18.683	0.663 0.137	85.40%	331.6

CONCLUSIONS

We have applied Hilbert transform on ECG for the detection of R peak. This method gives correlation coefficient 85.40%. This method provides a feedback control to slow down or speed up breathing rate to resonant frequency. The current work is used in biomedical signal processing shows the validity of the affirmation in academic and professional aspects in medical field.

REFERENCES

1. “Real time heart rate detection and heart rate variability calculation,” In IEEE Humanitarian Technology Conference (R10-HTC), Agra, India, 21-23 Dec. 2016, pp. 1-4.
2. A.L. Valor, M.R.B. Apsay, J. R.M. Acebo, A. Aguilar, C.J.B. Onquit, and M.G. Chua, “HeartSaver: A heart rate monitoring system with SMS notification,” In IEEE Conference on Systems, Process and Control (ICSPC), Melaka, Malaysia, 16 –18, December, 2016, pp. 1-6.
3. B. Mallick and A. K. Patro, “Heart rate monitoring system using fingertip through arduino and processing software,” International Journal of Science, engineering and Technology Research (IJSETR), vol. 5(1), pp. 84-89, 2016.
4. S. Sukaphat, S. Nanthachaiporn, K. Upphaccha and P. Tantipatrakul, “Heart rate measurement on Android platform,” In IEEE 13th International Conference on Electrical Engineering/Electronics, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 28 June-1 July 2016, pp. 1-5.
5. P. Zhang, J. Zhang, Q. Qiu, Y. Chen, J. Liu, “The method of linear inflation control in Ambulatory Blood Pressure measurement at finger,” In IEEE International Conference on Real-time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6-10 June 2016, pp. 13-16.
6. I. Liu, H.-M. Cheng, C.-H. Chen, S.-H. Sung, J.-O. Hahn, and R. Mukkamala, “Patient-Specific Oscillometric Blood Pressure Measurement: Validation for Accuracy and Repeatability,” IEEE
7. E. Mäyrä, A. Soronen, I. Koskinen, K. Kuusela, J. Mikkonen, J. Vanhala, and M. Zakrzewski, “Probing a proactive home: Challenges in researching and designing everyday smart environments,” Human Technology: An Interdisciplinary Journal on Humans in ICT Environments, vol. 2(2), pp. 158-186, 2016.

8. U. J. Ryu, E. T. Kim, K. H. An, S. H. Woo, and Y. S. Chang, "A Bluetooth based 5-HD Measurement System for u-Healthcare," *International Journal of Control and Automation*, vol. 6(1), pp. 141-150, 2013.
9. Y. Dae Cha and G. Yoon, "Ubiquitous health monitoring system for multiple users using a ZigBee and WLAN dual-network," *Telemedicine and e-Health*, vol. 15(9), pp. 891-897, 2013.
10. Y.-S. Chang and B.-Y. Kim, "A Wireless ECG Measurement System based on the Zigbee USN," *The Korea Information Processing Society Transactions: Part C*, vol. 18(3), pp. 195-198, 2011.
11. B.Otto, A. Milenkovic, C. Sanders, and E. Jovanov, "System architecture of a wireless body area sensor network for ubiquitous health monitoring," *Journal of mobile multimedia*, vol. 1(4), pp. 307-326, 2006.
12. B. Nair, S.-Y. Tan, H.-W. Gan, S.-F. Lim, J. Tan, M. Zhu, H. Gao, N.H.Chua, W. L. Peh, and K.H. Mak, "The use of ambulatory tonometric radial arterial wave capture to measure ambulatory blood pressure: the validation of a novel wrist-bound device in adults," *Journal of human hypertension*, vol. 22(3), pp. 220-223, 2007.
13. C. Kim, W. Jin, S. H. Woo, and Y. Chang, "A new approach on digital blood pressure measurement method for u-healthcare systems," *International Journal of Bio-Science and Bio-Technology*, vol. 7(1), pp.169-178, 2015.