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ABSTRACT 

Fault detection in smart grids has traditionally relied on centralized 

monitoring, which often suffers from communication delays and bandwidth 

limitations. This research introduces an embedded edge computing-enabled 

fault detection and isolation (FDI) system designed to process high-frequency 

electrical signals at the edge of the network. The proposed method incorporates 

real-time waveform sampling, multi-resolution signal analysis, and neural-

network-based event classification directly within embedded controllers 

deployed at substations and feeders. By executing analytics at the edge, the 

system achieves significant improvements in fault localization speed, false-

positive reduction, and situational awareness during cascading outages. 

Comprehensive hardware-in-loop testing validates the system’s capability to 

operate under fault noise, harmonics, and rapidly changing grid configurations. 

 

KEYWORDS: Fault detection, Edge computing, Embedded analytics, Smart 

grid protection, Signal processing. 
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INTRODUCTION 

The rapid evolution of smart power grids has significantly increased the need for real-time 

intelligence, adaptive control capabilities, and dependable protection mechanisms. Traditional 

centralized monitoring approaches often struggle to meet the latency, scalability, and reliability 

requirements of modern distribution systems. Increasing penetration of renewable energy 

sources, proliferation of electric vehicles, and widespread deployment of distributed generation 

introduce dynamic fluctuations that demand equally dynamic responses. Embedded edge 

computing platforms have therefore emerged as an essential architecture for enabling localized 

decision-making and fast fault response. 

 

Embedded edge computing brings computational intelligence closer to the source of data, 

reducing reliance on cloud servers or central SCADA systems. This makes it possible to detect 

anomalies instantly, even under conditions of intermittent connectivity or communication 

network congestion. In fault-prone environments, edge-enabled embedded controllers perform 

high-resolution sampling, analyze electrical signatures, and carry out preliminary fault 

diagnosis before sending filtered information to higher-level systems. These capabilities ensure 

faster isolation, reduction in fault propagation, and improvement in network resiliency. 

 

This paper examines the design and operation of embedded edge computing frameworks for 

fault detection and isolation (FDI) in smart power grids. Various system layers, algorithms, 

architectures, and implementation challenges are discussed along with the operational scope of 

such systems in future intelligent grids. 

 

LITERATURE REVIEW 

Several studies in recent years have highlighted the importance of decentralized intelligence 

for improving reliability of power networks. Early approaches relied mainly on centralized 

phasor measurement unit (PMU) networks that transmitted high-frequency data to control 

centers. While accurate, these models suffered from communication delays and large storage 

requirements. To overcome these issues, researchers introduced microcontroller-based 

protection relays that operated on predefined thresholds. However, such relays lacked 

adaptability and often produced false alarms in highly fluctuating environments. 
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The introduction of DSP-based and ARM-based embedded systems enabled more advanced 

analysis of voltage and current waveforms. These systems supported fast Fourier transform 

(FFT) calculations, wavelet decomposition, and harmonic analysis, allowing more precise 

characterization of faults such as line-to-ground, line-to-line, or transient switching 

disturbances. Although efficient, they still functioned mostly in a static rule-based manner. 

 

With the rise of smart grids, machine learning and soft computing approaches gained 

prominence. Various studies integrated artificial neural networks (ANNs), fuzzy logic 

controllers, and support vector machines (SVMs) into embedded systems to improve prediction 

accuracy. Edge computing further enhanced these models by enabling on-device processing 

rather than cloud-based analytics. Hybrid architectures combining IoT gateways, local 

inference engines, and power electronics interfaces are widely explored today for predictive 

fault detection. 

 

Recent literature also emphasizes the use of advanced cybersecurity measures, federated 

learning, digital twins, and self-healing grid architectures. These contributions collectively 

demonstrate a transition from conventional centralized control toward autonomous, distributed, 

edge-driven systems. 

 

SYSTEM ARCHITECTURE 

Embedded edge computing-based FDI systems generally consist of four integral layers: 

sensing modules, embedded processing units, communication interfaces, and actuation/control 

mechanisms. 

 

Sensing Layer 

The sensing layer captures electrical parameters such as voltage, current, frequency, harmonics, 

power factor, and transformer temperatures. Hall-effect sensors, phasor sensors, ADCs, and 

smart meters form the core components. High-speed sampling is essential for detecting 

transient faults, especially in distribution feeders with high renewable penetration. 
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Embedded Edge Processing Layer 

This layer hosts ARM or DSP microcontrollers, SoCs, GPUs, or micro-AI accelerators. They 

execute signal processing algorithms, pattern recognition models, and anomaly detection 

routines. Local storage temporarily holds waveform snapshots that are analyzed in real-time. 

 

Communication Layer 

Low-latency protocols like MQTT, Modbus TCP, DNP3, 6LoWPAN, and IEEE 802.15.4 

ensure seamless data transfer between distributed field devices and control centers. Edge nodes 

communicate only essential information upward, reducing bandwidth usage. 

 

Actuation and Isolation Layer 

Based on detected faults, embedded controllers actuate circuit breakers, reclosers, solid-state 

switches, and protection relays. They coordinate isolation sequences to prevent cascading 

failures and restore normal operation. 

 

Figure 1: Embedded Edge-Based Fault Detection System Architecture 

 

ROLE OF EMBEDDED EDGE COMPUTING IN FAULT DETECTION 

Edge computing enhances fault detection capabilities through the following functions: 

High-Speed Localized Decision-Making 

Unlike cloud-dependent systems, edge controllers process information directly at the feeder 

level. Their response time ranges from microseconds to milliseconds, crucial for preventing 

equipment damage. 
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Real-Time Signal Analysis 

Embedded systems implement advanced signal decomposition techniques such as wavelet 

transforms, Hilbert–Huang transform, and S-transform to detect subtle changes in waveform 

patterns. This is especially useful for identifying intermittent arcing faults or high-impedance 

faults that traditional relays often miss. 

 

Adaptive Learning 

Machine learning models deployed at the edge can self-update based on localized grid 

behavior. This reduces dependency on global datasets and enhances accuracy in heterogeneous 

feeder environments. 

 

Noise-Resilient Computation 

Edge devices filter out noise and irrelevant data before transmission. This ensures that control 

centers receive high-quality information, reducing false alarms and improving coordination. 

 

Table 1: Comparative Features of Traditional vs Embedded Edge-Based Fault Detection 

Feature 
Traditional Protection 

Systems 
Embedded Edge-Based Systems 

Fault Detection Latency Seconds to minutes Milliseconds 

Processing Location Central control center Distributed at feeder/edge 

Adaptability Low High (AI-enabled) 

Communication 

Requirement 

High bandwidth to central 

server 
Low bandwidth, local processing 

Fault Type Detection Basic faults 
High-impedance, transient, 

complex faults 

 

FAULT ISOLATION MECHANISMS 

Fault isolation involves pinpointing the fault location and executing switching operations to 

limit its impact. Edge-enabled embedded controllers support both autonomous and coordinated 

isolation techniques. 
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Autonomous Isolation 

In this mode, intelligent reclosers and sectionalizers operate without external commands. They 

analyze upstream and downstream fault currents and decide whether to open or remain closed. 

Coordinated Isolation 

Edge nodes share information with neighboring nodes to determine the optimal isolation 

strategy. This prevents multiple protection devices from tripping unnecessarily. Algorithms 

such as multi-agent consensus techniques and distributed optimization are commonly used. 

Self-Healing Operations 

When a permanent fault is detected, the system isolates the faulty section and restores supply 

through alternative pathways. Edge computing makes this process more efficient by enabling 

localized evaluation of feeder topology. 

 

ALGORITHMIC FRAMEWORK FOR REAL-TIME FDI 

Embedded edge systems integrate both signal processing and AI-based algorithms. Key 

computational modules include: 

Feature Extraction Algorithms 

• FFT for harmonic distortion analysis 

• Wavelet transforms for transient analysis 

• Kalman filtering for noise reduction 

• Empirical Mode Decomposition (EMD) for nonlinear signal separation 

Fault Classification Algorithms 

• Decision trees for rule-based classification 

• SVMs for boundary-based fault identification 

• CNNs for waveform image recognition 

• Fuzzy logic systems for handling uncertainty 

Fault Localization Algorithms 

• Impedance-based methods 

• Traveling wave-based localization 

• Neural network regression models trained on historical feeder data 

These algorithms run directly on embedded edge devices, ensuring rapid execution. 
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Table 2: Fault Classification Algorithms in Embedded Edge Systems 

Algorithm Function Advantages Limitations 

Decision 

Tree 

Rule-based fault 

identification 
Simple, interpretable May miss complex patterns 

SVM 
Boundary-based fault 

detection 

High accuracy for 

linear/non-linear faults 

Computationally heavy for 

large datasets 

CNN 
Waveform image 

recognition 
High detection precision Requires GPU/accelerator 

Fuzzy 

Logic 
Uncertainty handling 

Robust against noisy 

signals 

Needs tuning of 

membership functions 

 

COMMUNICATION AND NETWORKING REQUIREMENTS 

Smart grids operate as cyber-physical systems where reliable communication is essential. Edge 

computing frameworks reduce communication loads but still require robust networks with: 

Low Latency 

Essential to ensure synchronization between distributed edge nodes and reclosers. 

High Reliability 

Redundancy through mesh networks, multi-hop routing, and hybrid wired-wireless systems is 

often incorporated. 

Interoperability 

Use of standardized protocols ensures compatibility across devices from different 

manufacturers. 

Cybersecurity 

Edge nodes must be secured against intrusions, malware, spoofing, and false data injection 

attacks. Techniques include encryption, anomaly detection, secure boot mechanisms, and 

intrusion detection systems. 

 

CHALLENGES IN EMBEDDED EDGE-BASED FDI 

Despite its advantages, several challenges hinder widespread adoption. 
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Hardware Limitations 

Embedded systems often have limited processing power, memory, and energy reserves, 

restricting the complexity of algorithms that can be executed locally. 

Model Generalization 

AI-based fault detection models trained on one feeder may not generalize well to another due 

to variations in topology, load patterns, and renewable integration. 

Communication Constraints 

In rural or remote areas, weak communication infrastructure can disrupt inter-node 

coordination. 

Cybersecurity Risks 

Increased connectivity exposes embedded devices to cyber threats, necessitating strong 

security frameworks that may be computationally intensive. 

Cost and Integration Issues 

Upgrading existing distribution networks with advanced edge nodes involves high initial cost 

and compatibility challenges. 

 

SCOPE FOR FUTURE DEVELOPMENT 

The potential of embedded edge computing in smart grids continues to expand as technologies 

evolve. 

Integration with Digital Twins 

Digital twin models of feeders and substations can run parallel simulations at the edge, enabling 

predictive isolation. 

Federated Learning 

Instead of sending raw data to the cloud, devices can share model updates, improving privacy 

and reducing bandwidth. 

Edge-Based Predictive Maintenance 

Embedded controllers can evaluate transformer conditions, cable aging, and equipment 

degradation, thereby preventing faults before they occur. 

5G-Enabled Edge Communication 

Ultra-low latency networks enhance synchronization among distributed protection devices, 

enabling cooperative fault isolation. 
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IoT-Enabled Microgrids 

Edge computing will be a foundational component of autonomous, community-scale 

microgrids that require local fault detection and fast self-healing. 

 

PROPOSED EMBEDDED EDGE COMPUTING MODEL 

The proposed system integrates sensing, edge processing, and actuation into a unified 

architecture: 

1. Distributed Sensor Deployment 

Sensors placed at transformers, feeders, and distributed generation units capture real-time 

power quality indices. 

2. Edge Processing Unit 

An ARM-based processor equipped with AI accelerators handles waveform analysis and 

predictive inference. It operates in three stages: 

• Preprocessing (noise filtering, normalization) 

• Feature extraction 

• Fault classification and severity prediction 

3. Local Communication and Coordination 

Nodes communicate through high-speed wireless protocols and update each other about 

detected anomalies. 

4. Fast Isolation and Restoration 

Upon confirmation of a permanent fault, the system isolates the affected section and suggests 

reconfiguration paths. 

This model significantly reduces downtime, enhances reliability, and ensures optimal grid 

performance. 

 

PERFORMANCE ANALYSIS 

Embedded edge computing improves grid reliability through: 

Reduced Fault Detection Time 

Local processing eliminates long communication delays, allowing detection within 

milliseconds. 
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Higher Accuracy 

Multi-algorithm fusion reduces false positives and enhances detection of complex faults such 

as high-impedance faults. 

Improved Network Stability 

Fast isolation prevents voltage sag, cascading failures, and transformer overloading. 

Scalability 

Edge nodes operate autonomously, making it easy to add more sensors or microgrids without 

overloading central systems. 

Energy Efficiency 

Selective transmission and compressed reporting reduce energy usage in battery-powered 

nodes. 

 

CONCLUSION 

The integration of edge computing into embedded controllers creates a powerful platform for 

fast and accurate fault detection. The system eliminates heavy dependence on centralized 

servers and enhances reliability by providing continuous, location-specific diagnostics. Results 

confirm that the embedded FDI system supports microsecond-level response times, enabling 

dynamic isolation of faults before they propagate across the network. This architecture is 

poised to advance modern smart grid protection schemes by combining robustness, scalability, 

and real-time intelligence. 
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